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Abstract: A flexible protein-peptide docking method has been designed to consider not only ligand flexibility
but also the flexibility of the protein. The method is based on a Monte Carlo annealing process. Simulations
with a distance root-mean-square (dRMS) virtual energy function revealed that the flexibility of protein side
chains was as important as ligand flexibility for successful protein-peptide docking. On the basis of mean
field theory, a transferable potential was designed to evaluate distance-dependent protein-ligand interactions
and atomic solvation energies. The potential parameters were developed using a self-consistent process
based on only 10 known complex structures. The effectiveness of each intermediate potential was judged
on the basis of a Z score, approximating the gap between the energy of the native complex and the average
energy of a decoy set. The Z score was determined using experimentally determined native structures and
decoys generated by docking with the intermediate potentials. Using 6600 generated decoys and the Z
score optimization criterion proposed in this work, the developed potential yielded an acceptable correlation
of R2 ) 0.77, with binding free energies determined for known MHC I complexes (Class I Major
Histocompatibility protein HLA-A*0201) which were not present in the training set. Test docking on 25
complexes further revealed a significant correlation between energy and dRMS, important for identifying
native-like conformations. The near-native structures always belonged to one of the conformational classes
with lower predicted binding energy. The lowest energy docked conformations are generally associated
with near-native conformations, less than 3.0 Å dRMS (and in many cases less than 1.0 Å) from the
experimentally determined structures.

Introduction

Molecular docking is widely used in modern drug discovery,
and many approaches, such as DOCK1-3 and AutoDock,4-6

have been developed for evaluating protein-small molecule
interactions. Full consideration of complex flexibility, especially
ligand flexibility, is a common feature of current docking
methods. In recent years, protein-protein docking has drawn
significant attention, and some popular methods have been
developed which were mainly based on geometric or chemical
complementarity with respect to an inflexible protein.7-13 While
much attention has been paid to these areas of study, the

intermediate challenge of protein-polypeptide docking is often
neglected. One reason is simply the problem of classification,
where protein-peptide docking is often grouped into either
protein-small molecule or protein-protein docking according
to peptide size. Another reason lies in the significant compu-
tational difficulties due to the flexibility of peptides and proteins,
both of which should be addressed. Considering the low toxicity,
synthetic accessibility, and other potentially useful features of
polypeptides, it is important to study protein-peptide inter-
actions and address the challenge of flexibility inherent to these
systems.

In molecular docking, evaluating the binding affinity between
the protein and ligand accurately and rapidly remains a principal
challenge. Traditional force fields in molecular mechanics (MM)
evaluate free energy using several techniques, such as free
energy perturbation (FEP), thermodynamic integration (TI),
etc.14-17 Unfortunately, significant computational requirements
prevent broad application of these techniques for lead screening.
Alternatively, the development of empirical scoring functions
has been found to be a practical compromise and has been used
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in exploring protein-ligand interactions, using quantitative
structure-activity relationships (QSAR), three-dimensional
QSAR such as comparative molecular field analysis (CoMFA),
and especially expanded master equation methods (ME).14,16-18

Using these methods, one can construct a scoring function that
exhibits a good correlation with known experimental binding
free energies as well as determined or computed physiochemical
properties from known structures in the training set.19-25 These
approaches generally perform well in closely related protein-
ligand systems rather than being universally applicable.19,20

Other scoring approaches use knowledge-based methods, which
adopt mean field theory (MF) to derive an averaged interaction
potential based on the statistical distribution of structural features
among protein-ligand complexes in a training set.26-31 Because
of statistical limitations, this type of potential has difficulties
in representing distance-dependent interactions, such as elec-
trostatic energy.26-28 Following the original SMoG method,27

Muegge et al. approached this problem using a large number
of training structures.25 Many of these approaches have been
explored in drug discovery. However, their efficiency and
universality depend on the size and structural diversity of the
training set. In particular, the master equation method also
requires the experimental binding free energies of each structure
within the training set. As for the protein-peptide complexes
studied here, these methods will be difficult to apply because
of the limited availability of determined structures and corre-
sponding experimental binding free energies. Our group pro-
posed aZ score optimization approach to potential development
with applications to protein folding.30,32 Based on the large
number of decoys generated from a few typical structures,Z
score optimization can generate a transferable potential directly
applicable to protein-peptide docking with possible applications
for binding free energy prediction.

In this work, we have developed a flexible docking method
using a Monte Carlo annealing simulation. This approach is
rooted in an earlier Monte Carlo-based approach to folding in
fully atomic and flexible protein models.33 As opposed to the
majority of docking approaches, the method proposed here
considers not only the flexibility of the ligand but also that of
the protein. To represent short-range dispersion and long-range
electrostatic interactions, our approach is based on a distance-
dependent potential, which is then parametrized byZ score

optimization. The optimization algorithm is self-consistent,
evaluating theZ score of each intermediate potential on the basis
of decoys generated with the potential obtained in the previous
optimization steps. The optimized potential is found to yield a
high correlation with binding free energies determined for
known MHC I complexes that are not in the training set (Class
I Major Histocompatibility protein HLA-A*0201). When the
optimized potential is applied to protein-peptide docking, a
significant correlation between energy and distance root-mean-
square (dRMS) of the generated conformations is observed, and
native-like conformations can be identified in most cases.

Methods

Structure Sets.We systematically searched the protein data bank
(PDB) (release April 2001, no. 96) and found 443 entries for protein-
peptide complexes. All structures were classified using structural
classification of proteins (SCOP), and redundant structures were
removed, leaving 87 complexes. An additional selection criterion was
then applied, eliminating peptides with unnatural amino acids, com-
plexes involving small molecules or metal ions in the binding site, and
complexes with other structural defects. In the end, 25 structures
remained, and few of them had experimental binding free energies
available.

Ten from the remaining 25 protein-peptide complex structures were
selected as the training set to optimize the potential. These complexes
comprise a diverse set, as they belong to different protein families and
are involved in different disease processes (Table 1). The peptide ligands
also have different lengths, and their composition consists of all 20
natural amino acids. All these structures are high-resolution X-ray
structures (<2.3 Å), with the exception of one NMR structure that is
related to an important apoptosis process (PDB ID 1bxl). The remaining
15 structures comprise the testing set.

Classification of Atom Types.The coordinates of hydrogen atoms
in native structures are seldom determined from X-ray crystallographic
experiments. In our docking process, hydrogens were treated as one
atom type and were only considered in removing clashes but not in
energy evaluation. Because our potential mainly considers a solvent-
accessible surface-based solvation energy and distance-dependent
contact energies, which are related to electrostatic interactions, van der
Waals interactions, and salt-bridge and hydrogen-bond interactions, the
atom types in the method will be classified by their atomic numbers,
partial charges, and van der Waals radii. All of these parameters are
taken from the parm99 parameter set of the AMBER 7.0 program.34-36

The partial charge is the principal factor in classification due to its
significant variability. On the basis of a cutoff of 0.2 charge unit, all
atoms including hydrogen atoms and metal ions were classified into
12 atom types (supplement A, Supporting Information). Metal ions not
involved in binding were not considered. Neglecting hydrogens and
metal ions, this left 10 remaining atom types and a total of 400 (10×
10 × 4) parameters to be optimized within the energy function.

Flexible Molecular Docking Method. (a) Monte Carlo Annealing
Process.A Monte Carlo annealing simulation protocol was adopted in
our flexible docking process.37 The initial temperature was set to be
3% of the energy of the native structure, the cooling rate was 0.992,
the initial acceptance rate was 0.750, and the simulation was not
terminated until the energy difference between the two nearest accepted
steps converged to less than 0.0001 of the total energy for 10 000 times
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continuously or the simulation reached the maximum number of 1.5
million steps. To accelerate computational speed, all atoms were mapped
into a periodic cubic space, which can accommodate any size protein
complex in theory. This cubic space is partitioned by a grid into smaller
cubes in order to accelerate energy calculations. The spacing of the
internal grid is 6.0 Å, and only the interactions within the same grid or
neighboring grids will be counted. The contact distance cutoff between
atoms was 6.0 Å, meaning that all interactions occurring past this cutoff
are neglected. A simple starting configuration was chosen by separating
the protein and ligand, maintaining their bound conformations. Using
the Monte Carlo annealing algorithm, the ligand was then docked into
the protein binding pocket. The Monte Carlo move set includes ligand
rotation, which rotates the ligand in the coordinate space as a rigid
body; ligand translation, which translates the ligand in the coordinate
space as a rigid body; ligand torsion rotation, which rotates the partial
ligand atoms around the randomly selected ligand backbone or side-
chain torsion angle; protein side-chain torsion rotation, which rotates
the related protein side-chain atoms around the selected protein side-
chain torsion angle; and protein backbone torsion rotation, which rotates
the partial protein atoms around the selected protein backbone torsion
angles. All flexible torsion angles are consistent with the given rotamer
library.27,38The detailed Monte Carlo process is illustrated in supplement
B (Supporting Information).

In the Monte Carlo step involving the protein side-chain torsion
rotation, first a ligand neighboring space is defined to cover the grids
that ligand occupied and the neighboring grids. One protein residue in
this space is then randomly selected, and its side-chain torsion angles
are rotated by small random angles within the given thresholds from
the rotamer library, respectively. The clash between the related atoms
is examined, and the rotation will repeat again if it results in atom
clashes in the generated complex. Because protein buried-cores are often
highly compacted, most of the accepted protein side-chain torsion
rotation after clash-checking is located on the protein surface. The
obtained structure is additionally judged by the metropolis criterion
based on binding energy evaluation.

For each protein-ligand complex, multiple Monte Carlo docking
simulations are started from different random seeds. The dRMSs
between generated decoys and the native structure are computed, and
a stable distribution is ensured from enough simulations. Additionally,
the dRMSs between generated decoys are also computed, and all decoys
are clustered into different conformational classes by dRMS with a
cutoff of 3.0 Å. The docking simulations continue until no new
conformational classes are generated. For most protein-ligand com-
plexes in this work, a total of 100 simulations are enough to ensure
that no new conformational classes were generated further and to sample
the conformational space thoroughly. Therefore, 100 simulations with
different random seeds are conducted for each protein-ligand complex.

(b) Restraint. A harmonic restraint called a surface restraint between
the protein and ligand was adopted to keep the ligand in contact with
the protein surface. The restraint was applied between the nearest atom
pair of the protein and ligand for which the distance is the shortest
between any protein-ligand atom pairs, and finally was coarse-grained
by determining the distance between the geometric centers of the grids
in which the restrained atoms were located (eq 1).d is the distance
between the centers of the nearest grid cells, andd0 is the contact
distance cutoff, 6.0 Å.

To further accelerate the computational speed, we shrank the
conformational space accessible by the ligand by introducing pocket
restraints. The restraint was computed between the geometric centers
of the protein binding pocket and the ligand (eq 1).d is the distance
between the above geometric centers, andd0 is the distance between
the geometric centers in the native complex structure plus a buffer of
8.0 Å. The accessible volume is large enough to include the protein
binding pocket as well as neighboring regions. Because the restraint
information can be easily obtained from rough protein structural analysis
or experimental data, the methods applied in this study will be
applicable to “real-world” problems.

From eq 1, we can see that both restraints will be zero and will not
contribute to the binding free energy when the ligand approaches the

(38) Liu, Z.; Jiang, L.; Gao, Y.; Liang, S.; Chen, H.; Han, Y.; Lai, L.Proteins
2003, 50, 49-62.

Table 1. Database of Protein-Peptide Complexes

PDB
ID

resolution/
Å protein ligand length

exposure
degree/%

1a30a 2.00 aspartic protease-hiv-1 protease EDL 3 16.2
1awqa 1.58 isomerase-cyclophilin a HAGPIA 6 53.9
1be9a 1.82 third pdz domain from the synaptic protein psd-95 KQTSV 5 40.7
1bxla NMR apoptosis- bcl-xl GQVGRQLAIIGDDINR 16 40.2
1ckaa 1.50 oncogene protein-c-crk (Mus musculus) PPPALPPKK 9 58.8
1eg4a 2.00 dystrophin ww domain fragment NMTPYRSPPPYVP 13 61.7
1elwa 1.60 chaperone-tpr1-domain of hop GPTIEEVD 8 48.8
1guxa 1.85 transcription reg-retinoblastoma protein DLYCYEQLN 9 46.4
1ycqa 2.30 oncogene protein,Xenopus laeVis mdm2 ETFSDLWKLLP 11 42.4
2fiba 2.10 blood coagulation-humanγ-fibrinogen carboxyl-terminal fragment GPRP 4 32.2
1i31b 2.5 exocytosis(µ2 adaptin subunit (ap50) of ap2 clathrin adaptor FYRALM 6 61.8
2cblb 2.1 proto-oncogene n-terminal domain of cbl SDGYTPEPA 9 64.8
1g3fb NMR apoptosis bir3 domain of xiap AVPI 4 43.8
1io6b NMR signaling protein growth factor receptor-bound protein 2 (grb2) sh3 domain RHYRPLPPLP 10 57.8
1ab9b 1.6 serine protease (bovineγ-chymotrypsin) CGVPAIQPVL 10 64.1
1bc5b 2.2 methyltransferase NWETF 5 49.6
1duzb 1.8 human class I histocompatibility antigen (hla-a 0201) LLFGYPVYV 9 26.1
1evhb 1.8 mena evh1 domain from murine FPPPP 5 44.0
1f95b NMR contractile protein (dynein light chain 8 (dlc8))/apoptosis MSCDKSTQT 9 44.2
1jhgb 1.3 regulatory protein (trp operon repressor mutant v58I) W 1 37.3
1vwgb 1.46 biotin-binding protein (streptavidin) CHPQGPPC 8 41.0
8tlnb 1.6 hydrolase (metalloproteinase thermolysin (E.C. 3.4.24.27)) VK 2 39.0
2sebb 2.5 hla-dr4 class II histocompatibility antigen AYMRADAAAGGA 12 38.7
1ce1b 1.9 therapeutic antibody campath-1h fab GTSSPSAD 8 33.2
1paub 2.5 apopain protease DEVD 4 27.9
1shfc 1.9 fyn proto-oncogene tyrosine kinase (Homo sapiens) PPPALPPKK 9 -
2cplc 1.63 cyclophilin a HAGPIA 6 -

a Ten complexes in training set.b Fifteen complexes in testing set.c Two unbound proteins in testing set.

Econstraint) {0, d < d0

(d - d0)
2, d g d0

(1)
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neighborhood of the protein binding pocket. In other words, these
restraints will not influence the energy evaluation nor the conformational
preference within the binding pocket.

Energy Functions for Protein-Peptide Binding Affinity Evalu-
ation. (a) A Pairwise Atomic, Distance-Dependent Potential between
the Protein and Peptide.Our group has developed a knowledge-based
potential, SMoG, which can accurately predict the binding free energies
of many protein-small molecule complexes. An obvious defect in the
potential is its weakness in considering electrostatic-like interactions,
which are highly distance-dependent. To fully characterize all atom-
pair interactions, especially the distance-dependent interactions, a
distance-dependent energy function is proposed, which is illustrated
in eq 2. In our design strategy,Rij is the actual distance between a pair

of atoms of typesi and j; Aij is the force constant related to the atom
pair; Bij is the typical interaction distance between atoms of typesi
andj; the exponentCij determines the interaction’s distance dependence;
andDij corresponds to a basic packing background. Several constraints
were applied to the parameters:Bij was set to be greater than the clash
distance (0.75 of the sum of van der Waals radii) and less than the
contact distance (1.6 of the sum of van der Waals radii);Cij took the
discrete values of-1, 0, 1, or 2, which characterize the electrostatic
interaction (-1), van der Waals or packing effect (0, 1), and hydrogen-
bond or salt-bridge interaction (2), respectively. These constraints have
the obvious benefit of shrinking the accessible solution space, providing
a tractable optimization problem. In order to avoid the significant
difference betweenAij ’s andDij ’s, Aij andDij were normalized together
to ensure the parameters have comparable values by iteration
optimizationsAij′ andDij′ are the corresponding normalized parameters
used in the final potential (eqs 3 and 4)sand a boundary condition
was established which enforces the pairwise energy (Eij) to be 0 when
the distance between the atoms is equal to or greater than a 6.0 Å cutoff.

(b) A Solvation Energy Function Based on the Atomic Solvent-
Accessible Surface (ASAS).A simplified solvation energy function
based on the solvent-accessible surface was adopted, the form of which
is similar to the pairwise contact potential (eq 5). The atomic solvent-
accessible surface was computed by an approximate analytic method
(eq 6),39 in which the parametersPi andPij were refit for the polypeptide
systems.

Compared with surface areas computed using the program Naccess,40

we obtained a high correlation ofR2 ) 0.824 and a slope of 1.03 for
atoms in both native structures and decoy structures. In eq 6,Ti is the
theoretical isolated surface area of atomi, Si is the computed surface
after deduction from neighboring atom contacts,Pi is a single-body
scaling factor forTi from atomi’s own effect,Pij scales the two-body

effect of a neighboring atomj on the accessible surface of atomi, and
bij is the contact surface area between atomsi and j.

(c) Goj Potential for the Internal Energy of the Protein and
Ligand. Differences in the protein or ligand internal energy, resulting
from movement around torsion angles, were computed using a Goj
potential. This ensured that their conformations remained near native,
while permitting reasonable flexibility during the docking process.33,41-43

For most “real-world” docking studies, however, the internal Goj energy
of the ligand would be inaccessible because the bound structure is
unknown and the peptide ligand is too flexible to assume a single
conformation. In many cases, however, the Goj internal energy term
does not contribute significantly to the total complexed energy. This
suggests that this energy term could be reliably neglected in future
docking studies. This argument is more thoroughly described later in
this paper. However, for those complexes in which the ligand is known
to have a specific bound conformation, for example, the peptide
substrate bound to Bcl-XL that maintains anR-helical structure in
complex,44 a Goj internal energy term may be useful.

The total energy in docking is the sum of the protein-ligand contact
energy, the protein and ligand internal energies, and the protein and
ligand solvation energies (eq 7). The adjustable parametersAij, Bij, Cij,

andDij in distance-dependent protein-peptide contact energy andAi,
Bi, Ci, andDi in solvation energy form the final potential and will be
optimized in the following self-consistentZ score optimization process.

Potential Optimization. (a) Z Score Optimization. Z score
optimization has been successfully used in developing protein folding
potentials.30 This method is based on the simple thermodynamic
hypothesis that the native structure of a protein has the lowest energy
(or free energy or potential of mean force if solvent degrees of freedom
and short-scale motions of the protein are taken into account), proposed
by Anfinsen in 1961.45,46 Here we applied this approach to protein-
ligand interactions and assumed that the native conformation of the
protein complex is the conformation with the lowest binding free energy.
There are two typicalZ score functions. One is called the criticalZ
score (ZC) and is based on a continuous random energy model (REM),
which presumes that energies of both the native structure and decoy
structures are random Gaussian variables. The criticalZ score is related
to the gap between the native energy and the average energy of the
decoys (eq 8), whereσ(Ei) is the standard deviation of the decoy
energies,〈Eci〉 is the average energy of the decoys, andi refers to one
protein-ligand complex. AnotherZ score function is called the gapZ
score (ZG), which presumes that there is a significant gap between native
energy and the lowest energy decoy (eq 9). We have considered the
merits of both functions and here propose a combinedZ score function
(eq 10),

to ensure a distribution of decoy energies and a significant gap between
the native energy and the lowest energy decoy. For multiple protein-
ligand complexes, two averageZ scores,〈Z〉1 and〈Z〉2, are computed,

(39) Hasel, W.; Hendrickson, T. F.; Still, W. C.Tetrahedron: Comput. Methodol.
1988, 1, 103-116.

(40) Hubbard, S. J.; Campbell, S. F.; Thornton, J. M.J. Mol. Biol. 1991, 220,
507-530.

(41) Go, N.; Abe, H.Int. J. Pept. Protein Res. 1983, 22, 622-632.
(42) Go, N.; Abe, H.Biopolymers1981, 20, 991-1011.
(43) Abe, H.; Go, N.Biopolymers1981, 20, 1013-1031.
(44) Sattler, M.; Liang, H.; Nettesheim, D.; Meadows, R. P.; Harlan, J. E.;

Eberstadt, M.; Yoon, H. S.; Shuker, S. B.; Chang, B. S.; Minn, A. J.;
Thompson, C. B.; Fesik, S. W.Science1997, 275, 983-986.

Epl-contractij ) Aij(Rij - Bij)
Cij + Dij

(|Aij| e 1.0,-1 e Cij e 2, |Dij| e 1.0) (2)

U ) x∑
i,j

(Aij
2 + Dij

2) (3)

Aij ′ ) Aij/U, Dij ′ ) Dij/U (4)

Esol i ) {Ai‚(Si - Bi)
Ci + Di, Si g Bi

0.0 , 0.0e Si e Bi

(|Ai| e 1.0, 0.0< Bi < 30.0, 0e Ci e 2, |Di| e 1.0) (5)

Si ) Ti ∏
j

(1.0- PiPijbij/Ti) (6)

Etotal ) Epl-contact+ wpgEp-go + w1gEl-go + wpsEp-sol + wlsEl-sol

(7)

ZC i )
Enativei - 〈EC i〉

σ(Ei)
(8)

ZG i ) Enativei - Elowesti (9)

Zi ) ZC i + wi

ZG i

σ(Ei)
)

EN i - 〈EC i〉
σ(Ei)

+ wi
EN i - 〈Elowesti〉

σ(Ei)
(10)
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which emphasizes a smallerZi score gap (eq 11) and a more

representative averageZi score gap (eqs 12-14), respectively.Z score
optimization was performed using a Monte Carlo annealing simulation
to parametrize the potential used to distinguish native structures from
decoy structures.

(b) Self-Consistent Potential Optimization Process in an MPI
Parallel Package.A self-consistent algorithm written in the C language
and using MPI parallel controlling was developed to link decoy
generation through a docking method and potential optimization
(supplement C, Supporting Information). The whole process has four
steps. In the initialization step, the complexes are prepared and their
native structures are relaxed to reduce clashes; an initial potential, which
can be random or predetermined, is constructed. In the second step,
the flexible docking method generates decoys based on the initial
potential. In the third step,Z score optimization is used to parametrize
the potential within a Monte Carlo annealing process. This process
includes perturbation and normalization of the potential by adjustable
parametersAij, Bij, Cij, Dij, Ai, Bi, Ci, andDi, decoy energy computation,
Z score computation, Monte Carlo metropolis evaluation ofZ score
difference to determine whether the perturbed potential is acceptable,
and convergence evaluation, until an improved potential is obtained.
Finally, in the last step, the decoy database is augmented with a new
set of decoy structures generated using the improved potential. The
latter two steps are repeated until the finalZ score reaches a
predetermined converged value or the number of decoys in the database
reaches a threshold. In our work, the initial potential is derived on the
SMoG2001 knowledge-based method.26-28 The initial distance-depend-
ent potential was chosen to match closely the SMoG2001 potential.47

In the SMoG2001 potential, the interaction energy between two atoms
is the sum of interaction energies associated with two distance bins
(0.0-3.5 Å and 3.5-4.5 Å). The distance-dependent functional
described in this work (eq 2) is fit according to eq 15, whereMij is the

SMoG2001 energy between atom typesi and j at a distance of 3.5-
4.5 Å, andNij is the energy between typesi and j at a distance of
0.0-3.5 Å. An initial set of 500 decoys was generated, and 150 decoys
were added in each round until the convergence criterion of potential

was reached. The final potential was chosen for the docking study as
described below.

(c) dRMS Virtual Energy Function for Consideration of Protein
Flexibility in Docking. While actual docking (see below) will be carried
out with the full potential developed by the above self-consistent
process, as a first step in evaluating the role of protein flexibility we
use dRMS as a virtual energy function. While such an energy function
requires knowledge of the final structure of the complexes and as such
cannot be used for docking purposes, it is useful for the analysis of the
minimal requirements of degree of protein flexibility needed to achieve
accurate docking with the more realistic energy function that will be
used throughout this study. By computing the distances between all
protein-ligand atom pairs, the dRMS is obtained as the root-mean-
square deviation of the distances between the docked conformation and
the native conformations. The dRMS potential, similar to a Goj potential,
assigns the most favorable energy to the native configuration. The
energy function increases proportionally to dRMS, providing a smooth
funnel landscape. This also provides a long-range attractive potential
that is not contained in a typical Goj potential.

Results

Flexibility Consideration in Protein -Peptide Docking.
Which aspects of flexibility should be considered in protein-
peptide docking? Instead of using the optimized potential, the
dRMS virtual energy function was used to study sampling issues
related to the importance of flexibility in docking. In the Monte
Carlo docking simulation with dRMS, after each movement,
the dRMS between the generated conformation and the native
structure is computed. The difference in dRMS virtual energy
to the last step is judged by the Metropolis criterion to determine
whether the current movement is acceptable. Sample complexes
from the training set with different ligand degrees of freedom
and different degrees of solvent exposure in the binding pocket
were selected as test cases (Table 2). Initially, two docking
approaches were employed to investigate the importance of
flexibility. In the first approach, full ligand flexibility was
considered while the protein was kept rigid. It was found that
the complexes with a solvent-exposed protein binding pocket
(degree of exposure>50%), such as 1cka and 1awq, achieve
native-like conformations (dRMS<1.0 Å) with relatively high
frequency (>50%). However, the complexes containing a buried
protein binding pocket (degree of exposure<40%) had native-
like conformations less frequently (frequency<20%), and the
average dRMS of the docked conformations was high (about
>4.0 Å). In the case of 1bxl, the binding pocket is not
significantly buried; however, native-like conformations were
rarely observed. The reason for this may be the size and the
flexibility of the 16-residue ligand (>15 residues). To achieve
more consistent docking results, additional protein flexibility
may be necessary.

In the second approach, flexible protein side-chain torsions
were introduced in the docking process. The results show that
more native-like conformations were generated for all com-
plexes, and the average dRMSs of the docked conformations
were significantly reduced. Among the test cases, the complexes
with an exposed binding pocket, especially the cyclophilin A
complex 1awq, demonstrated significant improvement. The
frequency of native-like conformations for this system was
higher than 90%, and the resulting docked peptides were
structurally similar to one another, with an average dRMS of
less than 0.8 Å relative to the native conformation. Although
the frequency of native-like conformations in buried binding

(45) Anfinsen, C. B.; Haber, E.; Sela, M.; White, F. H.Proc. Natl. Acad. Sci.
U.S.A.1961, 47, 1309-1314.

(46) Anfinsen, C. B.Science1973, 181, 223-230.
(47) Ishchenko, A. V.; Shakhnovich, E. I.J. Med. Chem. 2002, 45, 2770-

2780.
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pockets was significantly smaller than that in the exposed
binding pockets, protein side-chain flexibility still dramatically
improved the docking results (Table 2).

In addition to considering the flexibility of the protein and
ligand, making changes to the annealing protocol may be helpful
in overcoming the high energy barriers to significantly improve
the docking accuracy. Docking with the dRMS virtual scoring
function will produce native-like structures much more fre-
quently than with any transferable potential, and therefore
provides an upper bound on the expected docking efficiency.
In a modified annealing protocol, instead of decreasing the
temperature at a constant rate, a variable rate was used in the
Monte Carlo annealing docking. This had the effect of maintain-
ing a higher temperature in the beginning stages (Figure 1).
The docking results show that the revised annealing process
improved the docking accuracy further. For complexes with
solvent-exposed binding pockets, such as 1cka, the high
frequency of native-like structures was maintained while the
average dRMS was reduced. For complexes with buried binding
pockets, such as 2fib, the frequency of native-like conformations
increased to greater than 60%, and the average dRMS was less
than 1.5 Å (Table 3).

This analysis revealed that there were conformational con-
straints due to the accessibility from the protein binding pocket
and the size and flexibility of the peptide. In such docking
processes, not only full ligand flexibility but also protein side-
chain flexibility should be considered. It may also be necessary
to include partial protein backbone flexibility when hinge
movements are involved.48-51 Moreover, successful protein-
peptide docking also required an annealing protocol in which
the initial high temperature is cooled more slowly in order to
allow the system to overcome high energy barriers due to
structural constraints.

In fact, docking with our optimized potential also demon-
strated similar high energy barriers due to structural constraints.
If the docking started from the native bound state, it seldom
generated far-native structures which had distinguishable con-
formational differences and larger dRMSs (>5.0 Å) compared

(48) McCammon, J. A.; Gelin, B. R.; Karplus, M.; Wolynes, P. G.Nature1976,
262, 325-326.

(49) Rose, R. B.; Craik, C. S.; Stroud, R. M.Biochemistry1998, 37, 2607-
2621.

(50) Rose, R. B.; Craik, C. S.; Douglas, N. L.; Stroud, R. M.Biochemistry1996,
35, 12933-12944.

(51) Allikas, A.; Ord, D.; Kurg, R.; Kivi, S.; Ustav, M.Virus Res. 2001, 75,
95-106.

Table 2. Effect of Flexibility of Protein and Ligand on Docking Results

ligand flexibility only additional protein side-chain flexibility

PDB
ID ligand length

exposure
degree/%

decoys (%)
<1.0 Å

decoys (%)
<2.0 Å

average
dRMS/Å

decoys
<1.0 Å

decoys
<2.0 Å

average
dRMS/Å

1a30 EDL 3 16.2 6.0 8.0 4.45 12.0 38.0 2.86
1awq HAGPIA 6 53.9 58.0 80.0 1.02 94.0 98.0 0.78
1bxl GQVGRQLAIIGDDINR 16 40.2 6.0 26.0 3.94 12.0 46.0 3.27
1cka PPPALPPKK 9 58.8 82.0 100.0 0.42 94.0 100.0 0.31
2fib GPRP 4 32.2 20.0 24.0 4.26 34.0 42.0 3.17

Figure 1. Three kinds of annealing protocols exploited in flexible protein-peptide docking. From curves 1 to 3, the temperature decreasing rates in Monte
Carlo annealing docking process ranged from a fixed rate to a more flexible rate, and the system was kept under higher temperature for a longer time.

Table 3. Results from Different Annealing Protocols in Flexible Docking with dRMS Virtual Potential

annealing protocol 1 annealing protocol 2 annealing protocol 3

PDB
ID

pocket exposure
degree/%

decoys (%)
<1.0 Å

average
dRMS/Å

decoys (%)
<1.0 Å

average
dRMS/Å

decoys (%)
<1.0Å

average
dRMS/Å

1cka 58.8 94% 0.31 100% 0.20 100% 0.18
2fib 32.2 34% 3.17 72% 1.53 90% 0.77
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to native structure, and most of the generated conformations
had dRMSs of less than 2.0 Å. Finally, with full flexibility
included with regard to the ligand and protein side chains, and
using a Monte Carlo annealing process with a variable cooling
rate, the docking algorithm and the optimized potential can often
generate near-native conformations with dRMSs of less than
3.0 Å.

Potential Analysis. (a) Analysis of Contact Parameters.
On the basis of 6600 generated decoy complex structures and
42 intermediate potentials, the final optimized potential was
established using the self-consistent procedure described in the
Methods. The potential parameters were analyzed to determine
whether they reflect well-established physical relationships.
Regarding the distance dependence of contact energy param-
eters, we focused on the parameterCij describing the functional
form of distance dependence (Figure 2). Optimized functionals
for atom-pair interactions are physically intuitive. For example,
a Coulomb-like distance dependence (Cij ) -1, e ∝1/r) was
found between carboxyl-oxygen and carboxyl-oxygen pairs
(squarex[4]y[4]). Hydrophobic or van der Waals-like interactions
between well-separated pairs, showing a weak distance depen-
dence (Cij ) 0, 1), were found between neutral carbon and
neutral nitrogen atom pairs (squarex[1]y[1], x[6]y[1], x[1]y[6], x[6]y[6]).
A bond-like harmonic distance dependence (Cij ) 2) was
detected in pairs representing hydrogen-bond interactions
between ligand hydroxyl-oxygens and protein aromatic nitro-
gens (squarex[5]y[8]), disulfide bonds between sulfur-sulfur
atom pairs (squarex[10]y[10]), and salt bridges between oppositely

charged ligand carboxyl-oxygens and protein sp3 nitrogen atom
pairs (squarex[4]y[9]). Because the optimized potential is a mean
force potential, there are some functional relationships that
cannot be clearly associated with simple pair potentials. These
Cij parameters enforce distinct distance dependence regarding
interactions between various atom types, which may be used
to evaluate binding affinity more accurately. TheCij parameters
also appear coarsely symmetric with respect to the diagonal line
(x[0]y[0] f x[10]y[10]), implying similar but not identical properties
between related atom types located in ligands and proteins,
respectively. All optimized potential parameters are listed in
supplement D (Supporting Information).

(b) Analysis of the Solvation Contribution. The solvation
contribution to the potential is based on a model that is
dependent on the atomic surface area. Here we examine whether
the parameters determined for this model are physically intuitive
(Table 4). The most significant surface dependencies,Ci, are
associated with the fully charged nitrogen (atom type N3) and
exposed hydrophobic sulfur (atom type S). However, the
solvation energies of these two atom types have proportionality
constants,Ai, of opposite signs, as expected when comparing
polar and apolar solvation. Other atom types demonstrated a
relatively weak dependence on the atomic surface area (Ci),
especially the buried carbonyl carbon (atom type CC). It was
also found that all hydrophobic atom types have positive
proportionality constants (Ai) while polar atom types have
negative proportionality constants (Ai), again consistent with a
physical description of polar solvation.

The physical nature of the solvation terms can be further
illustrated by examining the effects of ligand binding to an MHC
I (Major Histocompatibility protein class I) protein complex
(PDB ID 1duz). The solvation contributions of the free state
and the bound state of the peptides were computed from the
potential (Figure 3). When the ligand was in the free state, a
large positive contribution to the solvation energy came from
the hydrophobic residues, such as leucine, tyrosine, phenyla-
lanine, valine, proline, while when the ligand was in the bound
state, a smaller positive or even negative contribution was made
by the same residues. Therefore, if we consider the solvation
energy difference during binding, it demonstrates that the
hydrophobic residues will often provide a favorable solvation
contribution in binding, consistent with other models of
hydrophobic solvation. For the protein-peptide complexes
studied here, solvation contributes 25-40% of the energy in
binding.

(c) Binding Free Energy Prediction.The binding affinities
of five MHC I HLA-A*0201 protein complexes with different
peptides were computed using the optimized potential, based
on the energy difference between the bound and free states. All
complexes have known crystal structures and experimental
binding free energies and do not have similar structures in the
training set (Figure 4a). An acceptable correlation ofR2 ) 0.770

Table 4. Potential Parameters of Ligand Solvation Contribution

atom
type CN CP CC OC OH NM NA NH N3 S

Ai 0.0740 -0.0497 0.0000 -0.0430 -0.0211 0.0439 0.0000 0.0000 -0.0717 0.0444
Bi 4.199 13.395 0.000 13.954 15.502 3.404 0.000 0.000 7.412 17.482
Ci 0.5 0.5 0.0 0.5 0.5 0.5 0.0 0.0 1.0 1.0
Di -0.0668 0.0152 -0.0478 -0.0323 0.0308 -0.0087 0.0905 -0.0114 0.0001 0.0561

Figure 2. Potential parametersCij in contact energy between protein-
peptide atom pairs. Squares with different colors of blue, cyan, green, and
yellow represent differentCij values of 2, 1, 0, and-1, respectively, which
also represent different distance dependences of contact interactions between
protein-peptide atom pairs, such as harmonic bond interaction, hydrophobic
or van der Waals interaction, and Coulomb-like electrostatic interaction.
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Figure 3. Analysis of the ligand solvation contribution of the MHC I complex 1duz.

Figure 4. Comparison between this work and Rognan’s work on predicted binding affinity for five determined X-ray structures of MHC I HLA-A*0201
complexes. (a) Fitting correlation of the developed docking potential. (b) Fitting correlation of empirical scoring function in Rognan’s work (R2 ) 0.895).
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between the predicted binding affinities and the experimental
binding free energies was obtained, comparable to theR2 )
0.895 computed using an empirical scoring function specifically
developed for MHC I protein complexes in Rognan’s work
(Figure 4b).19,20The predictions made by these two approaches
are also quite similar in that both overestimate the binding
affinity for 1hhj while predicting well the binding affinities for
the remaining four complexes. By including the Bcl-XL apop-
tosis complex44 in the database, the correlation is maintained
and even improved to yieldR2 ) 0.795.

High correlation with regard to MHC I protein complexes as
well as an additional Bcl-XL complex suggests that our potential
may be a transferable potential. It should be noted that the
implied transferability is principally determined by the distribu-
tion of atom-pair interactions in the generated decoys, but not
by the specific structures within the training set. Because the
potential is based on atom-pair interactions, it converges given
a reasonable number of decoys. For example, in supplement E
(Supporting Information), the distance distribution of atom pairs
between protein S atom type and peptide CN atom type in the
decoys covers all S-CN distance possibilities in current PDB
structures, though the decoys are developed from limited training
complexes and the S atom has a lower frequency than other

atom types in proteins. Therefore, if the training set can provide
typical atom-pair distance favorites, the developed potential
might be transferable to more protein-peptide complexes.

Protein-Peptide Docking Results.The docking algorithm
and the potential were examined further by docking protein-
peptide complexes from both the training set and the testing
set. For each complex, 100 docked conformations were gener-
ated by Monte Carlo annealing with different random seeds,
and their dRMS of protein-ligand heavy atom pairs were
computed. Basically, the relationship between dRMS and energy
in all cases followed the principal trend that conformations with
lower energies have smaller dRMSs. A few cases demonstrate
some deviations from this overall trend (Figure 5). A compre-
hensive analysis of these docking results is shown in Table 5.
Successful simulations were conducted on 8 of 10 complexes
in the training set (1awq, 1be9, 1bxl, 1cka, 1elw, 1gux, 1ycq,
and 2fib) and 7 of 15 complexes in the testing set (1g3f, 1io6,
1ab9, 1bc5, 1duz, 1jhg, and 2seb), in which the generated
conformations with the lowest energy were native-like structures
with dRMS less than 3.0 Å.

A docked structure with the lowest energy, corresponding to
the MHC I complex (1duz), is shown (Figure 6) and has the
highest dRMS (3.01 Å) of all the minimum energy docked

Figure 5. Accuracy of docking results: dRMS-energy correlation of protein-peptide docking. (a,b) Successful docking results (here results for complexes
1awq and 1elw are listed). (c) Successful docking result in which the native-like docked conformation can be distinguished by additional conformational
clustering (result for complex 1eg4 listed). (d) Failed prediction result in which native-like conformations cannot be distinguished (here the result for complex
1pau is listed).
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complexes. The structural comparison between the minimum
energy docked conformation and the native conformation
revealed that the docking process identifies the ligand’s native
orientation in the binding site. In the minimum energy docked
structure, the C-terminal conformation of peptide is almost
identical to that in the native structure, while the N-terminal

portion of the peptide just as closely resembles that in the native
state. Generally, however, this is still a successful docking.

Further, for one complex in the training set (1eg4) and five
complexes in the testing set (1i31, 2cbl, 1evh, 1f95, and 8tln),
although the docked conformations with the lowest energy were
not near-native structures, the docking simulations were still
successful because the native-like conformations were among
the 10 lowest energy conformations and could be easily
identified (Figure 5c). Those non-native conformations with the
lowest energy were often conformations trapped in a local
energy minimum, in which the ligand had diffused away from
the protein binding pocket. These trapped conformations could
be avoided by considering more restrictive pocket restraints. In
a few cases, the ligand adopted an alternative binding mode
within the binding pocket.

In the end, a total of 9 out of 10 complexes in the training
set and 12 out of 15 complexes in the testing set were accurately
docked, where the averaged dRMS of native-like conformations
was 0.83 Å in the training set and 1.23 Å in the testing set. The
training set performed better than the testing set because it had
better structural resolution, as well as being trained specifically,
etc. Docking simulations on 1 of 10 complexes in the training
set and 3 of 15 complexes in the testing set failed. Although
these cases still generated near-native conformations, they were
hard to distinguish because there were no obvious structural
classes in the generated conformations and the energy-dRMS
distribution was not clustered (see Figure 5d). A buried protein
binding pocket might be the main reason for failure since all of
these complexes had deep binding sites with a solvent exposure
of less than 40%. Ligand flexibility might be another consid-
eration.

Table 5. Flexible Protein-Peptide Docking Results

PDB
ID

resolution/
Å ligand length

exposure
degree/%

smallest
dRMS/Å

lowest energy
dRMS/Å

1a30c 2.00 EDL 3 16.2 2.38 5.37
1awqa 1.58 HAGPIA 6 53.9 0.73 0.85
1be9a 1.82 KQTSV 5 40.7 0.79 1.05
1bxla NMR GQVGRQLAIIGDDINR 16 40.2 1.44 1.44
1ckaa 1.50 PPPALPPKK 9 58.8 0.64 0.80
1eg4b 2.00 NMTPYRSPPPYVP 13 61.7 1.17 11.89
1elwa 1.60 GPTIEEVD 8 48.8 0.66 0.71
1guxa 1.85 DLYCYEQLN 9 46.4 0.68 1.79
1ycqa 2.30 ETFSDLWKLLP 11 42.4 0.79 1.63
2fiba 2.10 GPRP 4 32.2 0.57 2.62
1i31b 2.5 FYRALM 6 61.8 1.96 8.07
2cblb 2.1 SDGY(PO4)TPEPA 9 64.8 1.68 9.25
1g3fa NMR AVPI 4 43.8 0.75 2.15
1io6a NMR RHYRPLPPLP 10 57.8 1.64 2.66
1ab9a 1.6 CGVPAIQPVL 10 64.1 0.60 0.68
1bc5a 2.2 NWETF 5 49.6 0.76 1.42
1duza 1.8 LLFGYPVYV 9 26.1 2.78 3.01
1evhb 1.8 FPPPP 5 44.0 0.64 4.62
1f95b NMR MSCDKSTQT 9 44.2 0.91 3.34
1jhgb 1.3 W 1 37.3 1.01 2.44
1vwgd 1.46 CHPQGPPC 8 41.0 3.83 5.16
8tlnb 1.6 VK 2 39.0 0.95 4.40
2seba 2.5 AYMRADAAAGGA 12 38.7 1.04 1.04
1ce1e 1.9 GTSSPSAD 8 33.2 2.12 4.62
1paue 2.5 DEVD 4 27.9 1.97 5.22
1shff 1.9 PPPALPPKK 9 - 1.04 6.90
2cplf 1.63 HAGPIA 6 - 0.68 3.21

a Complexes which were accurately docked.b Complexes which have native-like docked conformations can be distinguished by additional conformational
clustering.c-e Complexes which failed in prediction because native-like conformations cannot be distinguished (c1a30 has the deeply buried binding pocket;
d1vwg’s ligand has to bend extremely to fit the pocket).f Result of docking peptide to unbound protein structure.

Figure 6. Structural comparison between the native conformation and the
docked conformation of the MHC I complex (1duz). The native conforma-
tion of the peptide is colored green, and the docked conformation is colored
blue.
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To validate the prediction ability in unbound protein-peptide
docking, two unbound protein structures, 1shf and 2cpl, are
tested. 1shf and 1cka have the homologous SH3 domains from
different species, for which the protein core structures are similar
while the binding sites have small differences caused by
neighboring loops. 2cpl has the unbound protein structure as in
1awq. The docking result shows that there are still similar
energy-dRMS relationships for these two cases and the
conformations with the smallest dRMSs, around 1.0 Å, belong
to the top conformations with lower energies and can be easily
identified by additional structural clustering. Superposing the
above-obtained 1shf peptide conformation onto the 1cka native
structure gives great structural fitness, as shown in Figure 7.

In general, the flexible docking algorithm can generate native-
like protein-peptide complex conformations within 3.0 Å of
the crystal structure. These docked conformations are often
among the lowest energy structures and can be distinguished
by additional conformational clustering when necessary.

Computational Speed. The computational speed of the
program is benchmarked on an Intel-P4 2.8 GHz PC with Redhat
9.0 linux system. Two complexes, 1cka and 1awq, which have
different protein sizes and peptide sizes, are tested. In supple-
ment F (Supporting Information) we list the CPU time for a
1.5-million-step Monte Carlo docking. Because of pocket
restraint in energy function, the protein size does not have
significant effect on the speed, while the size and flexibility of
peptide are the principal factors. Basically there is a linear
correlation between the peptide flexibility and computational
time. For a complex system consisting of a 200-residue protein
and a 10-residue peptide, it will take not more than 2 h on the
above computer, which is fast enough considering the flexibility
of the system.

Discussion

Z Score Optimization Criterion. Efficient Z score optimiza-
tion should consider all complexes within the training set and
include a reasonable optimization criterion. In our potential
optimization, eq 11 was used initially, which was biased toward
the complexes with a smallerZ gap (|Zi|), such as 1cka. By
optimizing on the basis of eq 11, the finalZ score converges
rapidly in the initial steps of the self-consistent optimization
process, yielding a〈Z〉 close to-5.0 (see Figure 8). However,
this approach would produce a biased potential, which cannot
generate efficient decoys for all training set complexes necessary
for further optimization. Therefore, to eliminate this bias in the
potential optimization process, eq 12 was adopted to more
uniformly consider all complexes within the training set. This
equation takes into account the averageZ value as well as both
boundaries of theZ gaps.Z score optimization attempts to
maximize the energy gap between the native structure and the
corresponding decoys, while the decoy generation procedure
attempts to minimize the gap. As in traditional min-max

Figure 7. Structural comparison between the docked conformation and
the native conformation for the SH3 domainsstereoview of superposed
structures of docking peptide to unbound protein structure in 1shf and native
bound complex structure in 1cka. Green, native bound peptide structure in
1cka complex; blue, docked peptide structure to unbound protein structure
in 1shf; remainder, superposed structures of unbound 1shf protein and bound
1cka protein.

Figure 8. Z score optimization process.
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algorithms, the solution to the optimal potential can be found
from the above self-consistent process.

As stated previously, the energy of the generated decoys for
each complex follows a Gaussian distribution determined by
the criticalZ score (ZC). In addition, native structures are always
located in the extreme tail of this energy distribution (Figure
9a). When the potential has been optimized well, more native-
like decoys will be generated. The energies of these decoys may
be similar to the energies of the native structures and would
form a shifted Gaussian distribution around the native energy
(Figure 9b). Because these native-like decoys are not signifi-
cantly distinct from the native structures, further optimization
to distinguish them from the native structures will overfit the
potential and pushZC to zero. Therefore, a new convergence
criterion should be determined forZC.52,53 A negative value of
full-width half-maximum (fwhm), which in our case was
-2.354, is the standard to distinguish two Gaussian distributions,
and could be a reasonable optimization criterion forZC (Figure
9d). In our potential optimization, the finalZC reached was
-2.421.

The proposedZC criterion was supported by designed
potential optimization based onZC. After the initial potential

was developed from the initial 3500 docked decoys, it was
optimized further using two different processes. In one process,
additional decoys were generated by docking starting from the
native bound conformations, producing more near-native decoys.
The energies of these new decoys form an energy distribution
inclusive of the native energies (Figure 9c). Another optimiza-
tion process generated decoys by docking from far-native initial
conformations. A comparison was conducted using theZC score
optimization process. The correlation between the predicted
binding affinity using the optimized potentials and the experi-
mental binding free energies of the same five MHC I protein
complexes revealed significant differences. The first process,
based on near-native decoys, produces a potential that has failed
to converge. The correlation with experimental binding affinities
using this potential was quite poor (Figure 10). As in the
combinedZ score (eq 10), whenZG was used in potential
optimization, which more strictly distinguishes the native-like
decoys from the native structure, the resulting potential was even
worse. In the second process, based on more far-native decoys,
the potential converges well and produces potentials with high
correlation to experimental binding affinities.

As for the optimization criterion of gapZ score (ZG) within
the combinedZ score (eq 10), the theoretical cutoff should be
zero, because the criticalZ score (ZC) attempts to make the

(52) Mirny, L. A.; Shakhnovich, E. I.J. Mol. Biol. 1998, 283, 507-526.
(53) Mirny, L. A.; Finkelstein, A. V.; Shakhnovich, E. I.Proc. Natl. Acad. Sci.

U.S.A.2000, 97, 9978-9983.

Figure 9. Energy distribution of generated decoys for 1cka. (a) Energy distribution of decoys in intermediate potential optimization process (total 3800
decoys), which basically followed Gaussian distribution and only a few native-like decoys appeared. (b) Energy distribution of decoys in the later potential
optimization process (total 5600 decoys). More native-like decoys are generated. (c) Energy distribution with more near-native decoys (total 5600decoys),
which formed a shifted Gaussian distribution. (d) Criterion to distinguish two Gaussian distributions by fwhm.
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energies of decoys and the native structures continuously
distributed. Our finalZG reached a value of-0.395, and still
has a small energy gap.

Goj Energy Contribution. In this work, Goj energies in the
protein and peptide were introduced in order to restrain protein
and peptide conformations, improving docking sampling ef-
ficiency. Here we investigate the importance of the Goj
“restraints” as it pertains to the training set complexes (Table
6). First, the contribution of the Goj energies to the total energy
was computed for the native structures. The smaller contribution
of the ligand Goj energy (<6%) and larger contribution of protein
Goj energy (>35%) roughly illustrates that the ligand Goj energy
is less crucial while the protein Goj energy may be important.
A more accurate description of the importance of the Goj energy
should consider its contribution to the energy difference between
docked conformations, which is the key to identifying final
native-like docked structures. It was found that the ligand Goj
energy range contributes minimally to the total energy range

(6%) while the protein Goj energy contributes more significantly
(>16%). Although the ligand Goj energy does not appear to
strongly distinguish near-native from far-native decoys, the
ligands nevertheless exhibit significant conformation variability,
with total dRMS ranging from 0.0 to 15.0 Å. Therefore, the
ligand Goj energy does not contribute significantly to the
energy-dRMS distribution and is less important for the
thermodynamic aspects of docking. Since the ligand Goj restraint
does not perturb the obtained results, this energy term can be
ignored in future docking. The protein Goj energy restraint,
however, is still important, together with the protein-peptide
distance-dependent contact energy and the atomic surface-based
solvation energy.

Conclusion

In summary, to overcome high-energy repulsive barriers in
protein-peptide docking, a docking method was developed
which not only considers the full flexibility of the ligand but

Figure 10. Determination of optimization criterion for criticalZ score (ZC) by comparison of two different potential optimization processes: 1, potential
optimization based on more artificial near-native decoys generated by docking starting from native bound conformation; 2, potential optimizationbased on
general decoys docked from the far-native state. (a)Z score comparison; process 1 was harder to converge. (b) Fitness correlation of binding affinity for five
known MHC I complexes.
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also takes into account protein side-chain flexibility, which was
proven to be crucialin our preliminary calculationsdocking
with an idealized dRMS virtual energy function. Using a
physical optimization criterion and a training set of only 10
protein-peptide complex structures, a transferable potential was
designed for actual docking process. The optimization procedure
involves a novel iterative method based onZ score minimization
and decoy generation. The potential considers protein-ligand
atom-pair interactions and an atomic solvation contribution. The
optimized potential accurately predicts binding affinity in
protein-peptide complexes. With the optimized potential, the
flexible docking algorithm could recover the binding state of
most protein-peptide complexes with high precision. Both the
docking method and rapid potential might have potential
applications to database screening in drug discovery.
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Table 6. Goj Energy Contribution to Total Conformational Energy

contribution of Gō energies
to total energy of native structures

contribution of Gō energy range
to total energy range of docked conformations

PDB
ID

ligand
size

ligand Gō
energy/%

protein Gō
energy/%

ligand Gō
energy/%

protein Gō
energy/%

1a30 3 0.54 61.28 2.75 37.77
1awq 6 0.92 61.36 1.35 25.59
1be9 5 1.27 49.64 2.01 23.56
1bxl 16 4.02 51.25 4.40 17.33
1cka 9 3.15 35.89 2.03 16.39
1eg4 13 2.06 64.49 4.46 24.15
1elw 8 1.96 58.19 2.02 31.21
1gux 9 1.38 66.34 3.86 21.11
1ycq 11 5.22 43.74 5.14 16.51
2fib 4 0.39 64.37 1.66 36.89
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